The Evidence-Theoretic k-NN Rule for Rank-Ordered Data: Application to Predict an Individual's Source of Loan
نویسندگان
چکیده
We adapted the nonparametric evidence-theoretic k-Nearest Neighbor (k-NN) rule,whichwasoriginally designed formultinomial choice data, to rank-ordered choice data. The contribution of thismodel is its ability to extract information fromall theobserved rankings to improve theprediction power for each individual’s primary choice. The evidence-theoretic k-NN rule for heterogeneous rank-ordered datamethod can be consistently applied to complete and partial rank-ordered choice data. This model was used to predict an individual’s source of loan given his or her characteristics and also identify individual characteristics that help the prediction. The results show that the prediction from the rank-ordered choice model outperforms that of the traditionalmultinomial choicemodelwith only one observed choice.
منابع مشابه
Investigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملمقایسه روشهای k نزدیکترین همسایگی و شبکه عصبی مصنوعی برای پهنهبندی رقومی شوری خاک در منطقه چاه افضل اردکان
Digital soil mapping techniques which incorporate the digital auxiliary environmental data to field observation data using software are more reliable and efficient compared to conventional surveys. Therefore, this study has been conducted to use k- Nearest Neighbors (k-NN) and artificial neural network (ANN) to predict spatial variability of soil salinity in Ardekan district in an area of 700 k...
متن کاملGeneralization of Dynamic Two Stage Models in DEA: An Application in Saderat Bank
Dynamic network data envelopment analysis (DNDEA) has attracted a lot of attention in recent years. On one hand the available models in DNDEA evaluating the performance of a DMU with interrelated processes during specified multiple periods but on the other hand they can only measure the efficiency of dynamic network structure when a supply chain structure present. For example, in the banking in...
متن کامل